32 research outputs found

    Influence of lanthanide promoters on Ni/SBA-15 catalysts for syngas production by methane dry reforming

    Get PDF
    AbstractThe catalytic performance of Ce- and La-promoted Ni/SBA-15 catalysts for syngas production from CO2 reforming of methane has been investigated in a fixed-bed reactor at stoichiometric feed composition. Both promoted and unpromoted catalysts possessed high BET surface area of 303-445 m2 g-1. Additionally, SBA-15 support had a relatively uniform rod-like shape with a diameter of about 0.55μm and a reduction in the crystallite size of NiO phase from 27.0 to 19.1nm was observed with promoter addition reasonably due to the strong interaction between promoter and NiO particles. CeO2 and La2O3 dopants were finely dispersed on catalyst surface. Temperature-programmed oxidation of spent catalysts showed that coke-resistance was improved significantly with promoter modification and 3%La-10%Ni/SBA-15 catalyst was the most resistant to carbonaceous deposition rationally due to the least NiO crystallite size hindering the nucleation and growth of graphitic carbon. Hence, La-promoted catalyst appeared to be the optimum catalyst in terms of reactant conversion, H2 yield and stability whilst a gradual decline in both reactant conversion and H2 yield was experienced with unpromoted and Ce-doped catalysts. Regardless of catalyst types, the ratio of H2 to CO was always less than unity preferred for Fischer-Tropsch synthesis

    Properties-activity correlation of Nickel supported on fibrous Zeolite-Y for dry reforming of methane

    Get PDF
    Nickel-supported Fibrous zeolite-Y (Ni/FHY) was successfully synthesized via the microemulsion method using HY as seed, followed by catalytic evaluation in dry reforming of methane (DRM) for hydrogen production. Ni/FHY possessed good NiO distribution, improved metal-support interface, and strong basicity, accredited to the fibrous structure of FHY. This unique morphology led to the enrichment in the amount of accessible Ni active sites, thus resulting in the superior activity of Ni/FHY (XCH=95.1%,XCO=91.1%,H2/CO=0.89) compared to Ni/HY (XCH=92.7%,XCO=89.8%,H2/CO=0.78). Meanwhile, the inferior performance of Ni/HY could be caused by the poor distribution of Ni with large particles, thus contributing to high carbon deposition and Ni sintering. The unique physicochemical properties and superior catalytic activity confirmed its viability in the DRM

    Anemia prevalence in women of reproductive age in low- and middle-income countries between 2000 and 2018

    Get PDF
    Anemia is a globally widespread condition in women and is associated with reduced economic productivity and increased mortality worldwide. Here we map annual 2000–2018 geospatial estimates of anemia prevalence in women of reproductive age (15–49 years) across 82 low- and middle-income countries (LMICs), stratify anemia by severity and aggregate results to policy-relevant administrative and national levels. Additionally, we provide subnational disparity analyses to provide a comprehensive overview of anemia prevalence inequalities within these countries and predict progress toward the World Health Organization’s Global Nutrition Target (WHO GNT) to reduce anemia by half by 2030. Our results demonstrate widespread moderate improvements in overall anemia prevalence but identify only three LMICs with a high probability of achieving the WHO GNT by 2030 at a national scale, and no LMIC is expected to achieve the target in all their subnational administrative units. Our maps show where large within-country disparities occur, as well as areas likely to fall short of the WHO GNT, offering precision public health tools so that adequate resource allocation and subsequent interventions can be targeted to the most vulnerable populations.Peer reviewe

    Anemia prevalence in women of reproductive age in low- and middle-income countries between 2000 and 2018

    Get PDF

    Application of Dielectric Barrier Discharge to improve the flashback limit of a lean premixed dump combustor

    No full text
    In recent years, lean-premixed (LP) combustors have been widely studied due to their potential to reduce NOx emissions in comparison to diffusion type combustors. However, the fact that the fuels and oxidizers are mixed upstream of the combustion zone makes LP type of combustors a candidate for upstream flame propagation (i.e., flashback) in the premixer that is typically not designed to sustain high temperatures. Moreover, there has been a recent demand for fuel-flexible gas turbines that can operate on hydrogen-enriched fuels like Syngas. Combustors originally designed for slower kinetics fuels like natural gas can potentially encounter flashback if operated with faster burning fuels like those containing hydrogen as a constituent. There exists a clear need in fuel-flexible lean-premixed combustors to control flashback that will not only prevent costly component damage but will also enhance the operability margin of engines. A successful attempt has been made to control flashback in an atmospheric LP combustor, burning natural gas-air mixtures, via the application of Dielectric Barrier Discharge (DBD). A low-power DBD actuator was designed, fabricated and integrated into a premixer made out of quartz. The actuator was tuned to produce a low magnitude ionic wind with an intention to modify the velocity profile in the premixer. Flashback conditions were created by decreasing the air flow rate while keeping the fuel flow rate constant. Within this experimental setup, flashback happened in the core flow along the axis of the cylindrical premixer. Results show that the utilization of the DBD delays the occurrence of flashback to higher equivalence ratios. Improvements as high as about 5% of the flashback limit have been obtained without compromising the blowout limit. It is anticipated that this novel application of DBD will lead to future demonstrations of the concept under realistic gas turbine operating conditions. Copyright \ua9 2011 by Her Majesty the Queen in Right of Canada.Peer reviewed: YesNRC publication: Ye

    Application of dielectric barrier discharge to improve the flashback limit of a lean premixed dump combustor

    No full text
    In recent years, lean-premixed (LP) combustors have been widely studied due to their potential to reduce NO x emissions in comparison to diffusion type combustors. However, the fact that the fuels and oxidizers are mixed upstream of the combustion zone makes LP type of combustors a candidate for upstream flame propagation (i.e., flashback) in the premixer that is typically not designed to sustain high temperatures. Moreover, there has been a recent demand for fuel-flexible gas turbines that can operate on hydrogen-enriched fuels like Syngas. Combustors originally designed for slower kinetics fuels like natural gas can potentially encounter flashback if operated with faster burning fuels like those containing hydrogen as a constituent. There exists a clear need in fuel-flexible lean-premixed combustors to control flashback that will not only prevent costly component damage but will also enhance the operability margin of engines. A successful attempt has been made to control flashback in an atmospheric LP combustor, burning natural gas-air mixtures, via the application of dielectric barrier discharge (DBD). A low-power DBD actuator was designed, fabricated and integrated into a premixer made out of quartz. The actuator was tuned to produce a low magnitude ionic wind with an intention to modify the velocity profile in the premixer. Flashback conditions were created by decreasing the air flow rate while keeping the fuel flow rate constant. Within this experimental setup, flashback happened in the core flow along the axis of the cylindrical premixer. Results show that the utilization of the DBD delays the occurrence of flashback to higher equivalence ratios. Improvements as high as about 5 of the flashback limit have been obtained without compromising the blowout limit. It is anticipated that this novel application of DBD will lead to future demonstrations of the concept under realistic gas turbine operating conditions. \ua9 2012 Her Majesty the Queen in Right of Canada.Peer reviewed: YesNRC publication: Ye

    Xanthones from the bark of Garcinia merguensis

    No full text
    10.1016/S0031-9422(02)00433-8Phytochemistry634467-470PYTC

    Physiological implications of genomic state in parthenogenetic lizards of reciprocal hybrid origin

    No full text
    Parthenogenesis often evolves in association with hybridization, but the associated ecological consequences are poorly understood. The Australian gecko Heteronotia binoei is unusual because triploid parthenogenesis evolved through reciprocal crosses between two sexual lineages, resulting in four possible cytonuclear genotypes. In this species complex, we compared the performance of these parthenogenetic genotypes with their sexual progenitors for a suite of physiological traits (metabolic rate, thermal tolerance, locomotor performance, and in vitro activity and gene sequence divergence of a cytonuclear metabolic pathway, cytochrome C oxidase). Mass-specific metabolic rate scaled differently with body mass for parthenogens and sexuals, while heat tolerance provided the only evidence for cytonuclear incompatibility in hybrid parthenogens. The most prominent phenotypic effects were attributable to nuclear genome dosage. Overall, our results suggest that the hybrid/polyploidy origin of parthenogenetic H. binoei has had surprisingly few negative fitness consequences and may have produced a broader overall niche for the species

    Syngas production from methane dry reforming over Ni/SBA-15 catalyst: Effect of operating parameters

    Get PDF
    The influence of operating conditions including reactant partial pressure and reaction temperature on the catalytic performance of 10%Ni/SBA-15 catalyst for methane dry reforming (MDR) reaction has been investigated in this study. MDR reaction was carried out under atmospheric pressure at varying CH4/CO2 volume ratios of 3:1 to 1:3 and 923-1023 K in a tubular fixed-bed reactor. SBA-15 supported Ni catalyst exhibited high specific surface area of 444.96 m2 g-1 and NiO phase with average crystallite size of 27 nm was detected on catalyst surface by X-ray diffraction and Raman measurements. H2 temperature-programmed reaction shows that NiO particles were reduced to metallic Ni0 phase with degree of reduction of about 90.1% and the reduction temperature depended on the extent of metal-support interaction and confinement effect of mesoporous silica support. Catalytic activity appeared to be stable for 4 h on-stream at 973-1023 K whilst a slight drop in activity was observed at 923 K probably due to deposited carbon formed by thermodynamically favored CH4 decomposition reaction. Both CH4 and CO2 conversions increased with rising reaction temperature and reaching about 91% and 94%, respectively at 1023 K with CO2 and CH4 partial pressure of 20 kPa. CH4 conversion improved with increasing CO2 partial pressure, PCO2 and exhibited an optimum at PCO2 of 30-50 kPa depending on reaction temperature whilst a substantial decline in CO2 conversion was observed with growing PCO2. Additionally, CH4 and CO2 conversions decreased significantly with rising CH4 partial pressure because of increasing carbon formation rate via CH4 cracking in CH4-rich feed. Post-reaction characterization shows that active Ni metal phase was not re-oxidized to inactive metal oxide during MDR reaction. The heterogeneous nature of deposited carbons including carbon nanofilament and graphite was detected on catalyst surface by Raman measurement
    corecore